

AIGA 2005 Meeting

Cryogenic Vaporisation Systems

Prevention of brittle fracture of equipment and piping

by Eric Fortuit, Air Liquide 30 August 2005

Explosion in Italy: what happened

- The accident took place on April, 13th, 2003 morning, on an On-Site plant supplying nitrogen to the Customer PPG in Italy near Naples
- Our employee was called by the customer probably because something was not normal and the accident took place a few moments after he arrived at site
- A violent rupture of a nitrogen buffer capacity occurred
- The top part of the buffer capacity was found upside down near the bottom part and the water of the vaporization pool was found frozen
- One AL employee as well as three customer employees died during the accident

AIGA-

- The accident happened on a 500 m3/h nitrogen plant equipped with a nitrogen vaporization system and a buffer capacity at 9 bar (130 psi) pressure
- The vaporization system consisted in a liquid nitrogen storage and a water bath type vaporizer with water supplied by the customer
- There has been an entrance of cold gaseous or liquid nitrogen into the buffer tank
- The buffer, made of carbon steel, did not withstand the cold and bursted

Pictures

- <mark>AIGA</mark> --

5

6

- José Ballester Ricart
- Martin Dennehy
- Lennart Fredriksson
- Grant Holland
- Wolfgang Otte
- Pierre Petit

Praxair Espana Air Products Linde BOC Messer Air Liquide

- Causes and consequences of low temperature
- Types of vaporizers
- Design philosophy
- Ranking of hazards
- Safe design criteria
- Consideration for low temperature protection
- Solutions for low temperature protection
- Operation
- Periodic testing
- Training
- Customer awareness

- Customer demand higher than design capacity during an extended period
- Flow control valve fully open by malfunction
- Vaporizer heavily iced
- Low water level in water bath type vaporizers
- Steam supply, electrical heating, fuel gas failure for these types of vaporizers
- Fan stop for forced fan ambiant vaporizers

Cryogenic Embrittlement of metals

TEMPERATURE (°C)

Impact energy and temperature for carbon and austenitic stainless steels

Carbon steels become brittle at temperatures below –20°C-40°C

Types of vaporizers

Ambiant air vaporizers

High thermal ballast vaporizers

- Water bath vaporizers with hot water circulation
- Electrically heated metal block vaporizers
- Forced draft, fan ambiant vaporizers
- Ambient air vaporizers with trim heaters
- Ambient air vaporizer with switchover system

Low thermal ballast vaporizers

- Have little or no stored energy at a time of a utility outage
- Examples:
 - Vaporizers with heating fluid pumped through
 - Direct steam jacketed vaporizers

Risk assessment and PHLS factors

Severity of consequences linked to PV of equipment which may be subject to cryogenic embrittlement

- P3 (high severity): vaporizer with downstream buffer greater than 180 bar*liter
- P2 (medium severity): pressure*outlet diameter>1000 bar*mm
- P1 (low severity): pressure*outlet diameter<1000 bar*mm</p>

Fluid hazards

- H3:toxic and flamable gases
- H2: oxygen (for P3 and P2)
- H1: inerts and oxygen (P1 only)

Likelihood of low temperature

- L2:High thermal ballast vaporizers
- L1: ambient air vaporizers

Operating pattern

- S2: continuous supply or backup for peak shaving
- S1: backup supply only

Solutions for Low temperature protection

systems

- Following the risk assessment and the PHLS factors, the EIGA document proposes to select a specific type of low temperature protection system
 - These protection systems may include:
 - Low temperature detection device(s)
 - Logic solver
 - Shut-off device(s)
 - ✓
- Shut-off devices may be
 - Vaporiser outlet valve shut-off
 - Vaporiser inlet valve shut-off
 - Pump motor shut down on pump feeding liquid to the vaporiser
- If several sensors or shut-off devices are selected, they must be independent

Safe Design criteria

One example of safe design described in the EIGA document

Operation

Consumption monitoring

- Flow rate
- Use pattern (continuous or not)

Periodical inspection

- Ice build up
- Frosting of pipework
- Leakage of process fluids or utilities
- Addition of equipment by the customer (ex: buffer)

Frequency of inspections

A

Cryogenic embrittlement risks and design solutions must be known by process engineers, maintenance managers and technicians

Customer contracts must take into account

- Estimated flow rates and use patterns
- Design performance of the vaporization system
- Emergency response in case of non normal situation
- The selected low temperature protection system
- Customer training

IGC Document 133/05/E Cryogenic Vaporisation Systems Prevention of brittle fracture of Equipment and piping

has been published can be viewed and downloaded free of charge at

www.eiga.be

and is candidate for global harmonization

What do you do if you see the following when visiting a plant?

18

Λ

19

Thank You for your attention

