AIGA 2007 MEETING

PACKAGED GASES SAFETY

30-31 August 2007 PATTAYA, THAILAND

Cylinder filling Safe design and operation

Shaun LaGrange
Engineering Consultant
Global Operation Excellence

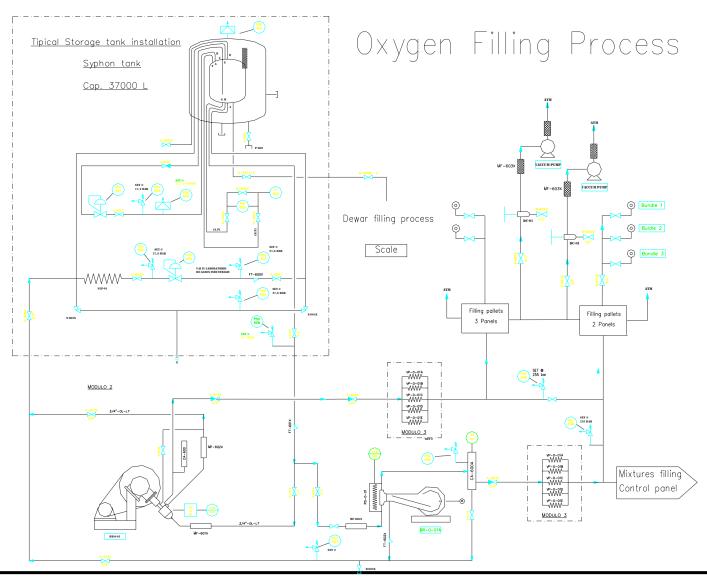
Praxair, Inc.

General

- Pipe and equipment to be adequately supported
- Distances minimized
- Product vents (including PRDs) to be piped to safe areas and separated
- Cylinders to be restrained
- Maintenance program (pigtails, fittings, valves, equipment calibrations)

Material Selection

- When choosing materials need to consider:
 - Product compatibility
 - Design pressure
 - Design temperature
 - Product velocity (Oxygen)


System Automation

- Automation can be used to:
 - Control set points to mitigate risks
 - Reduce liability (less personnel)
 - Mitigate operator error
 - Improve reliability of system

System Overview

Bulk Tanks

- Overpressure protection
 - Relief device and burst disk
 - Back up set with diverter valve
 - Vacuum disk on outer tank

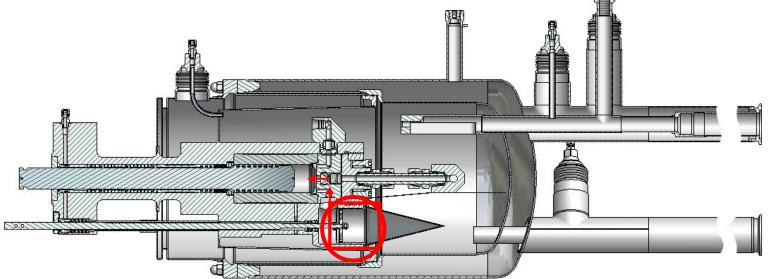
Pump Protection Systems

- Overpressure
 - Pressure switch (electrical)
 - Pressure relief valve (mechanical)
- Dry running
- Shaft seal leak detection
- Cavitation
- Overload (motor)

Auto Shut-off

Pumps

- High flow pumps
 - New generation of pump design that allows for a faster filling process
 - Variable frequency drives
 - Used to control the speed of the pump to ensure heat of compression is controlled


Pumps

- Sub-zero pumps
 - Work with low NPSH, optimizing storage tank capacity (lower losses)
 - Caution in emptying the tank

Principle of Sub-zero Pumps

Liquid is injected into the piston compression chamber The supercharged then pulls the pre-compressed liquid into its' chamber

As the Supercharger chamber has a larger volume than the piston compression chamber, the liquid is precompressed providing the necessary NPSH.

Pipe Design

- Liquid trap protection
 - Ensure lines are protected from pressure build up due to vaporized liquid product
 - Consider ball valves

Ensure ball and stem are vented to prevent

pressure build up

Pipe Design

- Low temperature protection
 - Ensure system is protected downstream of vaporizer in the event that cryogenic liquid is not completely vaporized
 - Avoid cryogenic liquid reaching carbon steel cylinders
- High pressure protection
 - Mechanical with optional electronic pressure devices

Fill Manifold Overview

- Securing cylinders, pallets and bundles
 - Ensure cylinders are secured from falling
 - Prevent removal of pallets and bundles still connected to a pressurized system
- Pressure ratings
 - Cylinder pressure ratings to be compatible with system MAWP

Fill Manifold Design

- Mixture manifold design
 - Gas compatibility considerations
 - CO₂ with oxidizers (possible hydrocarbons in CO₂)
 - Flammables with oxidizers
- Prevent contamination of source gases
- Protect low pressure sources from high pressure sources

Fill Manifold Design

- Mixture manifold design
 - Bridge (manual)
 - Maintenance program to ensure swing arm threads remain in good condition
 - Cap lines to prevent contamination and gas releases

Fill Manifold Design

- Mixture manifold design
 - Block & bleed (automated)
 - No contamination between gases
 - No over-pressurization of lines from high

pressure gas

Overfill Protection

- Filling by temperature and pressure
 - Accuracy in fill charts
 - Method for measuring cylinder temperature
 - Calibrated devices
- Filling by weight
 - Ensure scale is calibrated and correct capacity
 - Automatic shut off valve (optional)

Overfill Protection

- Liquid cylinder overfill
 - Fill by weight instead of to vent
- Liquefied gases (CO₂, N₂O)
 - Ensure information on the cylinder's water capacity and tare weight is known to ensure there will be enough gas space
 - Fill individually by weight

Vacuum Pumps

- Overpressure protection
- Oil compatible with the product
- Prevent oil suck back
- Inerting of system (line/trap) in flammable service

Pigtails

- Heat sinks (oxidizing service)
- Tethers / anti-whip restraint
- Life cycle
- Material
 - H₂ and He will permeate through Teflon
- Thread inspections
- General inspections

Design Review

- Risk Assessment
 - Hazop, FEMA
- Commissioning
 - Pre-start up safety review
 - Safety controls are in place & functional
 - Material as per specifications
- Documents
 - System specifications, drawings, safety equipment checklist

Cylinder filling Safe design and operation

THANK YOU!

