

PERLITE MANAGEMENT

AIGA 032/19

Revision of AIGA 032/12

Asia Industrial Gases Association

No-2 Venture Drive, # 22-28 Vision Exchange, Singapore 608526 Tel: +65 6705 5642 • Fax : +65 6863 3307 Internet: http://www.asiaiga.org

AIGA 032/19

PERLITE MANAGEMENT

As part of a programme of harmonization of industry standards, the Asia Industrial Gases Association (AIGA) has issued publication, AIGA032, *Perlite Management,* jointly produced by members of the International Harmonization Council and originally published by the Compressed Gases Association Inc (CGA) as P-8.3, *Perlite Management.*

This publication is intended as an internationally harmonized publication for the worldwide use and application by all members of Asia Industrial Gases Association (AIGA), Compressed Gas Association (CGA), European Industrial Gases Association, (EIGA), and Japan Industrial and Medical Gases Association (JIMGA). Each associations' technical content is identical, except for regional regulatory requirements and minor changes in formatting and spelling.

Disclaimer

All publications of AIGA or bearing AIGA's name contain information, including Codes of Practice, safety procedures and other technical information that were obtained from sources believed by AIGA to be reliable and/ or based on technical information and experience currently available from members of AIGA and others at the date of the publication. As such, we do not make any representation or warranty nor accept any liability as to the accuracy, completeness or correctness of the information contained in these publications.

While AIGA recommends that its members refer to or use its publications, such reference to or use thereof by its members or third parties is purely voluntary and not binding.

AIGA or its members make no guarantee of the results and assume no liability or responsibility in connection with the reference to or use of information or suggestions contained in AIGA's publications.

AIGA has no control whatsoever as regards, performance or non performance, misinterpretation, proper or improper use of any information or suggestions contained in AIGA's publications by any person or entity (including AIGA members) and AIGA expressly disclaims any liability in connection thereto.

AIGA's publications are subject to periodic review and users are cautioned to obtain the latest edition.

© Reproduced with permission from the Compressed Gas Association. All rights reserved.

ASIA INDUSTRIAL GASES ASSOCIATION No-2 Venture Drive, # 22-28 Vision Exchange, Singapore 608526 Tel: +65 67055642 Fax: +65 68633307 Internet: http://www.asiaiga.org

Contents

r

Page

iii

1	Introduction1		
2	Scope 1		
3	Definitions.13.1Publication Terminology13.2Technical Definitions13.2.1Cryogenic13.2.2Perlite23.2.3Perlite releases23.2.4Purge gas2		
4	Personnel safety		
5	Inspections and precautions 3 5.1 Atmospheric check 3 5.2 Ice formation 3 5.3 Perlite abrasion 4		
6	Perlite removal46.1Before perlite removal6.2Coldbox perlite removal5		
7	Perlite installation67.1Packaging7.2Perlite quality667.3Filling to avoid insulation space voids667.4Purge gas supply667.5Settling		
8	Disposal of perlite7		
9	Emergency plan for perlite releases		
10	References		

Amendments from 032/12

Section	Change
	Editorial to align style with IHC associations and Change from Cold Box to Cryogenic En-
	closures throughout the document
3.1	Addition of IHC definitions
5.2	Additional section
6.1	Additional requirements for perlite removal.
9	Emergency plan requirements enhanced

NOTE—Technical changes from the previous edition are underlined

1 Introduction

Perlite is used as an insulation medium in cryogenic <u>enclosures such as</u> coldboxes, cryogenic liquid tanks, field-erected flat bottom tanks, and pipe ducts, where perlite is filled into the annular spaces between the inner and the outer shells.

2 Scope

Perlite is nontoxic and nonflammable; however, the nature of the material and the large quantities involved require the use of special operations, handling, and safety procedures. This publication provides guidance for reducing the risks of <u>uncontrolled</u> perlite releases and incidents that could have potential for personal injury, property damage, downtime, environmental impact, <u>and consequences outside the perimeter of the plant</u>.

It covers the use of perlite in cryogenic <u>enclosures</u> and focuses on safety, perlite handling procedures, and emergency perlite management. This publication is for industrial gas plant manufacturers, owners, and operators of facilities that use and maintain perlite as an insulation medium for cryogenic equipment. Insulating materials, such as mineral wool or vermiculite and other synthetic silicates, are not covered in this publication. This publication does not cover hazards related to toxic and flammable gases.

Information regarding design considerations, operation, and maintenance of cryogenic enclosures is contained in AIGA 079, *Safe Design and Operation of Cryogenic Enclosures* [1]¹.

NOTE—This publication does not attempt to recommend or establish specific design or usage criteria, but to provide best practices. The end user shall determine the specific requirements.

3 Definitions

For the purpose of this publication, the following definitions apply.

3.1 <u>Publication terminology</u>

3.1.1 <u>Shall</u>

Indicates that the procedure is mandatory. It is used wherever the criterion for conformance to specific recommendations allows no deviation.

3.1.2 Should

Indicates that a procedure is recommended.

3.1.3 <u>May</u>

Indicates that the procedure is optional.

3.1.4 <u>Will</u>

Is used only to indicate the future, not a degree of requirement.

3.1.5 <u>Can</u>

Indicates a possibility or ability.

3.2 <u>Technical Definitions</u>

3.2.1 Coldbox

Cylindrical or rectangular enclosure, typically metal, surrounding the distillation columns and other cryogenic equipment.

NOTE—The space between the columns and the inner coldbox shell is filled with insulation material, typically perlite.

3.2.2 Cryogenic

Temperatures below -130 °F (-90 °C).

¹ References are shown by bracketed numbers and are listed in order of appearance in the reference section.

3.2.3 Perlite

Inert volcanic glass that forms an odorless, nonflammable, nontoxic lightweight powder aggregate when expanded by heat.

NOTE—Perlite is a highly effective insulating material used to reduce refrigeration losses or heat leak into the cryogenic enclosure.

CAUTION: Since it is a lightweight powder, it can become an asphyxiation hazard if inhaled or if submerged in perlite.

3.2.4 Perlite eruption

Rapid, uncontrolled displacement of perlite within the insulation space that can result in a violent perlite release.

<u>NOTE</u>It is commonly caused by the rapid vaporization of pooled cryogenic liquid in the perlite that has suddenly been warmed, moved, or physically disturbed.

3.2.5 Perlite releases

Uncontrolled spillage of perlite to the environment.

3.2.6 Purge gas

Moisture free, oil-free inert gas.

NOTE—For purge gas purity requirements, see AIGA 079[1].

4 Personnel safety

4.1 Working with perlite

Operations and maintenance personnel involved in working with equipment that contains bulk perlite shall be trained in the safe and correct methods of handling perlite and its characteristics. This training shall be recorded. Installation and removal work crews shall be experienced in perlite handling and should be supervised.

4.2 Personal protective equipment

Expanded perlite is a nontoxic material, but the recommended protective equipment(PPE) should be used as required for the particular task. Overalls, gloves, and hard hats should be used to prevent skin irritation.

Perlite is lightweight and becomes airborne very easily. If perlite enters the eyes or respiratory tract, it can cause serious irritation. Eye protection shall be used to provide protection due to the dusting of handled perlite. For more information on PPE, see AIGA 066, *Selection of Personal Protective Equipment* [2].

CAUTION: If insulation enters the eyes, do not rub them. Flush the eyes immediately with water.

If personnel must work in or enter an area with a high concentration of airborne perlite, they shall use a dust mask or full-face air-purifying respirator equipped with dust filters (NIOSH-approved or accepted equivalent per specific country standard). Refer to the safety data sheet (SDS) for information on regulatory exposure limits.

CAUTION: A perlite product can contain crystalline silica, which is considered to be a nuisance dust. Inhalation of high amounts of any nuisance dust over long periods can overload the lung clearance mechanism and make the lungs more vulnerable to respiratory disease.

Other safety considerations deal with the cryogenic fluids that can be entrained in the perlite during handling.

4.3 <u>Cryogenic enclosure</u> entry

Entry into <u>cryogenic enclosures shall only be undertaken under a safe work permit process, as entry</u> involves many potential hazards, which include but are not limited to the following:

- falling into the perlite and becoming submerged;
- oxygen deficiency due to release of residual nitrogen purge gas or condensation of oxygen against cold surfaces;
- oxygen enrichment due to leakages of oxygen-enriched liquid or liquid oxygen or from <u>vaporization of con-</u> densed of air <u>formed</u> against cold surfaces;
- frostbite caused by <u>contact with cold surfaces;</u>
- falling ice or blocks of frozen perlite caused by freezing of atmospheric moisture within the <u>cryogenic en-</u> <u>closure</u>;
- <u>sudden oxygen-enriched or -deficient atmospheres caused by trapped oxygen or nitrogen that can be released when perlite is disturbed during removal or maintenance activities;</u>
- <u>danger of perlite eruption caused by liquid pooled in the perlite, which can suddenly vaporize many days</u> after the coldbox equipment has been warmed up; and
- leakage of perlite from adjacent coldboxes via coldbox interconnections.

Never enter the enclosure until all confined space entry requirements have been met. In addition to any company requirements, applicable local and national regulations shall be met, for example, OSHA requirements in 29 CFR Part 1910 [3].

Whenever possible, remove all perlite and sweep or wash down the casing to eliminate dust and slippery surface hazards. When a person is required to work on or above a perlite mass, an adequate working platform <u>or</u> <u>alternative safety measures such as use of harnesses shall be used</u>.

5 Inspections and precautions during operation

5.1 <u>Cryogenic enclosure</u> atmospheric check

An atmospheric check should be completed periodically to verify that the insulation gas composition is the same as the purge gas <u>and verify that process gases have not leaked into the cryogenic enclosure</u>. The use of oxygen monitors indicates only the presence or absence of oxygen.

NOTE—For argon production plants where hydrogen is used to remove oxygen in the crude argon, it is possible for the hydrogen to leak into the coldbox. Periodic analysis of the coldbox annular space atmosphere for hydrogen should be completed.

5.2 <u>Cryogenic enclosure annular space pressure check</u>

Cryogenic enclosure annular space pressure should be checked periodically against design values. Low pressure can indicate inadequate purging and high pressure can be due to a leak.

5.3 Ice formation

External ice formation can result from:

- cryogenic gas or liquid leak;
- entry of ambient air or water:
 - due to improper sealing of penetrations into cryogenic enclosure
 - due to inadequate cryogenic enclosure maintenance resulting in cracks, corrosion, etc.
 - <u>due to inadequate purging;</u>
- insufficient and/or improperly installed insulation; and
- poor quality insulation.

The perlite level should be checked <u>periodically</u>, when a problem is suspected <u>(for example, a visible frost spot)</u>, and/or during routine <u>cryogenic enclosure</u> maintenance. The insulation will settle, especially after perlite is added to the <u>cryogenic enclosure</u>, and the insulation level could need to be topped off.

CAUTION: Use caution when checking the perlite level. The insulation space contains perlite and the purge gas, which is an asphyxiant.

5.4 Perlite abrasion

Perlite is abrasive. When entrained in a gas jet, perlite can cut through metal piping and equipment, damaging the equipment and allowing perlite to enter the process. The primary sources for such gas jets are either process leaks or damaged or broken piping inside the <u>cryogenic enclosure</u>.

For additional information, see AIGA 079 [1].

6 Perlite removal

CAUTION: Take steps to reduce the number of personnel in the work area. If possible, rope off the area and post warning signs to keep nonessential personnel away.

6.1 Before perlite removal

Before perlite removal, Perform the following steps in the order listed:

- a) Shut down the cryogenic process;
- b) <u>Drain</u> all cryogenic liquids from the process equipment and piping;
- c) Warm the process equipment and piping to a safe working temperature;

CAUTION: At a minimum, precautions shall be taken to protect personnel from perlite eruption in the event of liquid pooling due to a leak, engulfment, cryogenic exposure, and asphyxiation.

- d) Depressurize the equipment to a <u>slight positive pressure to prevent perlite entry into the process in case of</u> <u>a leak while allowing safe access for personnel when entering the cryogenic enclosure;</u>
- e) Stop the purge gas flow to the <u>cryogenic enclosure</u> insulation space and physically isolate the purge gas supply. This can be accomplished by the removal of a section of the piping or the insertion of a blind flange;

NOTE—For HYCO facilities, all flammable and toxic materials shall be purged from the coldbox and process piping.

- f) <u>Check the annular space pressure and atmospheric composition and if possible check at different eleva-</u> tions of the coldbox; and
- g) Open a top manhole before removing perlite to protect against a possible casing collapse by developing a vacuum during the perlite removal process.

6.2 <u>Cryogenic enclosure</u> perlite removal

6.2.1 Monitoring

The insulation space gas composition should be monitored continuously for the presence of excessive oxygen, combustible gases, or both. The composition should be checked along the height of the coldbox. If a high concentration (oxygen greater than 5% when purging with nitrogen or greater than 23% when purging with dry air) is detected, the manhole should be closed and a purge reinstated. Continue the purge until the oxygen concentration in the vent gas drops below these levels.

6.2.2 Removal process

To lessen the risks of uncontrolled perlite releases, removal of perlite should take place from the top of the <u>cry-ogenic enclosure</u> and proceed downward. This reduces both the potential for perlite bridging (agglomeration of the powder into a solid mass) and the amount of perlite that might be expelled from the casing should an uncontrolled release occur.

Perlite releases and eruptions can be caused by, but are not limited to the following:

- <u>Cryogenic enclosure</u> overpressurization due to equipment or process line failure, including purge gas overpressurization;
- Local overpressurization due to rapid vaporization of liquid that can occur when cryogenic liquid is pooled in the perlite, and the perlite is physically disturbed or the pool of liquid is suddenly warmed;
- Structural failure of the insulation containment device due to operating conditions (such as vacuum), embrittlement, or external loading;
- Mishandling during emptying operations (for example, rapid removal of perlite, removal from incorrect location, opening of a cryogenic enclosure panel below the perlite level, unexpected flowing of perlite from areas adjacent to the section or enclosure being emptied); and
- Sudden collapse of the bridged perlite.

Perlite removal nozzles should be used if they are provided. <u>If not present during the removal process, consideration should be given to adding nozzles.</u> For more information on placement of nozzles, see AIGA 079 [1]. If cryogenic liquid is known to have collected in the perlite, <u>the perlite</u> should not be withdrawn from the bottom of the coldbox; flashing <u>of liquid</u> in a fully perlited coldbox <u>can</u> result in a <u>perlite eruption</u>.

In order to detect cryogenic pooling or leaks, continuous monitoring of the oxygen level in the perlite being removed shall be considered.

An open-top perlite collection box should be used if perlite is removed using equipment not designed for oxygen service (for example, vacuum blowers found on commercial vacuum trucks). This allows for degasification of the perlite (escaping gas or vaporizing liquid) and prevents a possible oxygen-enriched atmosphere, which is a fire hazard.

Proceed cautiously if the perlite is suspected of containing cryogenic liquid that might lead to a hazardous atmosphere in the perlite collection box.

The insulation space pressure at ground level and at the level from which perlite is being withdrawn should be monitored using a manometer or gauge. If the pressure starts to increase, it can be an indication of an imminent perlite release and perlite removal should be stopped immediately.

6.2.3 Residual perlite

When the majority of perlite has been removed, residual perlite removal might be required. If removal of residual perlite requires entry into the <u>cryogenic enclosure</u>, follow regulatory and safety procedures including the following:

- <u>Comply with the applicable safe work permit process</u>;
- Monitor the annular space for safe oxygen content;
- Check the interior for ice blocks and remove large blocks by thawing, either mechanically or by judicious use of steam;
- Take care not to disturb or break small bore lines in the vicinity of the perlite clean-up operation; and
- Remove residual perlite by brushing, shoveling, or if only absolutely necessary, washing surfaces with water.

7 Perlite installation

7.1 Packaging

For small coldboxes or where only small quantities of perlite are required, either siloed or bagged perlite may be charged directly through manholes at the top of the <u>cryogenic enclosure</u>. Bulk shipments of expanded perlite can be <u>delivered</u> in closed-type tanker trailers equipped with a transfer hose to discharge the perlite directly into the <u>cryogenic enclosure</u> or into the annular space of a tank. The tanker shall be equipped to prevent moisture entry into the perlite during transport. The inside of the tanker should be clean.

<u>Where large quantities of perlite are required</u>, expansion "popping" of the perlite ore at the plant location can be more efficient. A knowledgeable contractor should complete this operation and provide all the necessary equipment and services.

7.2 Perlite quality

Perlite deteriorates each time it is handled. Before reuse, the perlite should be inspected for the following properties and compared to the values of the manufacturing specifications:

- loose density;
- compacted density;
- <u>particle</u> analysis;
- free moisture content; and
- organic material content.

NOTE—If the perlite is reused, there is normally some attrition and the <u>cryogenic enclosure</u> should be topped off with fresh perlite.

7.3 Filling to avoid insulation space voids

There are several methods to fill coldboxes without creating pockets or insulation voids:

- Perlite may be introduced in stages to help reduce voids. For coldboxes, first, add perlite at lower levels.
 Then, proceeding up the coldbox, add perlite through higher fill ports;
- Top fills are used when staged fills are not used or when topping off the insulation space; and
- When practical, vibration equipment or rubber mallets used to tap on the <u>cryogenic enclosure</u> exterior can be used to induce perlite settling, thus avoiding pockets or voids.

7.4 Purge gas supply

Once the insulation space is filled with perlite, all column entry points shall be closed and the purge gas supply should be immediately placed into service. For more information on purge gas operations and troubleshooting, see AIGA 079 [1].

Settling

After <u>process equipment inside the cryogenic enclosure has cooled</u> down and operation has commenced, settling of perlite normally occurs. The top of the <u>cryogenic enclosure</u> should be inspected and topped off with additional insulation as necessary.

CAUTION: Use caution when checking the perlite level. The insulation space is pressurized with the purging gas, which is most likely to be nitrogen (an asphyxiant). <u>Safety precautions shall be taken</u>. A self-contained breathing apparatus might be needed to ensure the safety of the inspection personnel from asphyxiating gas discharged at them from the opening. A standby person also might be needed in the event of an emergency. Depending upon the size of the opening used to make the inspection and the potential for falling into the cryogenic enclosure, <u>fall</u> protection gear also might be used. If inspection personnel must break the plane of the cryogenic enclosure opening to make the inspection, a confined space entry permit <u>is</u> required.

8 Disposal of perlite

Disposal of perlite <u>could</u> be governed by national or local environmental regulations. If contamination is suspected, conduct appropriate testing to determine whether the material is hazardous or not, as defined by applicable national or local hazardous waste regulations. If contamination is confirmed, dispose of the perlite in accordance with applicable regulations.

Noncontaminated perlite can be disposed of or recycled as governed by national or local environmental regulations.

9 Emergency plan for perlite releases

Facilities that use perlite <u>shall</u> have an emergency plan that addresses perlite releases. The emergency plan <u>shall</u> address who is to be called if there is a perlite release. The plan may list companies with <u>clean-up capa-bilities and</u> local disposal sites. Many landfills require prior approvals so that when disposal is required, the paperwork has already been completed and perlite can be accepted quickly.

The emergency plan shall be reviewed periodically to ensure that the information is accurate and up to date. Personnel shall receive training on the emergency plan and shall be notified when substantive changes to any emergency response procedures are made.

At a minimum, the emergency plan shall include the following procedures:

- a) Secure the area where the release occurred;
- b) Evacuate personnel from where the release occurred;
- c) Assess the size and magnitude of the release;
- d) <u>Implement containment based on the assessment (for example, to prevent perlite migration into water-ways, storm water, public highways, and adjacent processes or equipment);</u>
- e) Contact emergency response agencies and offsite neighbors, as required;
- f) Vacuum clean or wet sweep to avoid dusting;
- g) Contact qualified clean-up and perlite disposal contractors; and
- h) Check a perlite SDS for any required first aid/emergency procedures.

10 References

Unless otherwise specified, the latest edition shall apply.

[1] AIGA 079, *Safe Design and Operation of Cryogenic Enclosures*, Asia Industrial Gases Association, www.asiaiga.org

[2] AIGA 066, Selection of Personal Protective Equipment, www.asiaiga.org

[3] Code of Federal Regulations, Title 29 (Labor), U.S. Government Printing Office. www.gpo.gov

[4] AIGA 005, *Fire hazards of oxygen and oxygen enriched atmospheres*, Asia Industrial Gases Association, www.asiaiga.org

[5] AIGA 008, Hazards of inert gases, Asia Industrial Gases Association, www.asiaiga.org